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Table 7 Nondimensionalized deflection as a function of number of
k layers, angle, and side-to-thickness ratio for simply-
: supported angle-ply square plate (Material II, 2Q8-R)

6 = 5° 6 = 30° 6 = 45°
a/t | Source

| pEl  m=1 | w=2 a=1! n=2 o=Ii§]

| CFS T 37.850 36.840 | 33.325 29.878 | 32.300 29.131

;Z | : FEM 37.106 36.824 | 31.117 29.860 | 30.474 29.111
@ | CFS 13.164 12.5% | 12.155 8.875 | 11.575 8.429
' i ; FEM 12.866 12.578 | 10.152 8.855 @ 9.722 8.407
i ' . CFS | 9.760 9.256 } 9.568 6.316 @ 9.088 5.938
| FEM ! 9.536 9.238 7.598 6.297 | 7.210 5.922
CFS §* 7.475 7.008 7.909 4.669 | 7.4% 4.346
~ ° Zf}FEM J 7.302 6.9% 5.946 4.652 ! 5.586 4.332
: i %CFS | 4.883 4.454 6.099 2.872 i 5.773 2.62{i
i ' FEM 4.764 4.447 4.114 2.859 | 3.776 2.609:
| CFS 4.264 3.843 5.678 2.456 | 5.376 2.224
]Z’SJFEM 4.156 3.836 3.672 2.443J 3.334 2.211 |
; i ks 3.585 3.772 5.224 2.005 i 4.944 1.793
1 | FEM 3.487 3.165 3.163 1.992  2.814 1.781
: | CFS 3.427 3.015 | 5.119 1.900 ; 4.844 1.693
I i FEM 3.330 3.008 3.032 1.888 2.676 1.681
i | CFS 3.215 2.806 4.979 1.761 4.711 1.555?
i FEM 3.119 2.800 2.815 1.748 2.440 1.5485

CFS 3.162 2.754 4.944 1.726 4.678 1.527é
ks FEM 3.065 2.742 2.725 1.712 2.335 1.514i
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E]/E2 =1.0 , E3/E2 = 12.5 (not used in the YNS theory)

G]3/GZ3 = 1.5E2 > G]2 =04 E = Ny ® Vpg * 0.25

2+ ¥y

The finite-element results are in good agreement with the closed-form solu-
tion; however, the YNS theory seems to predict the stresses quite low for
thick plates.

A comment is in order on the closed-form solutions for the cross-ply
and angle-ply plates subjected to sinusoidal loadings and edge conditions
given in equations (14) and (24). 1In the case of cross-ply plates the
assumed solution in (17) and (21) satisfies, in addition to the boundary
conditions in (14), the following boundary conditions,

Ny (x,0) = Ny(x,b) = 05 Np(0,y) = Ny(a,y) =0 (42)

Similarly, in the case of angle-ply plates, the following additional boundary

conditions are satisfied by the solution in (27):

My(x,0) = M{(x,b) = 0, My)(0,y) = My(a,y) =0 (43)

From the variational formulation of the equations in (1)-(7), it follows that

the only boundary conditions that are physical and mathematically correct
are those in (14) and (24). That is, for example, if u is specified (essen-
tial boundary condition) at a boundary, N] cannot be specified (natural
boundary condition) there, and vice versa. Similarly, if ¥y is specified

at a boundary then M] cannot be specified there. Indeed, in the finite-
element formulation it is not possible, even if we wish, to specify

the essential and natural boundary conditions on the same portion of the
boundary. As a result, there seems to exist an inherent difference between

the closed-form solutions and finite-element solutions. However, from the




28

cross-ply bending results it is clear that this difference is not noticeable.
The reason could be attributed to the fact that the additional boundary condi-
tions (42) are also nearly met by the finite element solution. This is due
to the fact that the in-plane displacements are zero everywhere in the plate,
and there are very small in-plane forces in the plate (i.e., N] and N2 are almost
zero everywhere in the plate). However, for thermal loading, N1 and N2 are
even larger (although small), and the results may not agree as closely as
seen thus far.

The additional boundary conditions (43), in the case of angle-ply plates,
are too severe to be satisfied by the finite-element method in all cases.
The bending moments are typically large, and their magnitude decreases with
the stiffness coefficients, 516 and 826' These coefficients are large for
an even number of layers and their magnitude decreases with increasing number
of layers (see Tsai [14]). Thus, in angle-ply plates the finite-element
solutions and the closed-form solutions could differ substantially for smalil
number of layers (say n = 2) and be almost equal for large number of layers
(n = =).

One other comment that applies to the closed-form solution (27) of angle-
ply plates is that the assumed solution forces u and v to vanish at y = b/2

and x = a/2, respectively:
u(x,b/2) =0, v (a/2,y) =0 (44)

In the finite-element modeling of a quarter plate, the following symmetry

conditions were used for all edge conditions and laminations:

u(a/2,y) = 0, wx(a/Z,y) = 0, v(x,b/2) = 0, wy(x,b/?.) =0 (45)
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Clearly, the symmetry boundary conditions in (45) are physical whereas
those in (44) are not physically meaningful. This marks another difference
(which turns out to be a major one) between the closed-form and finite-element
formulations. Of course, one can force the symmetry boundary conditions (44)
in the finite-element model. Indeed, when the symmetry conditions in (44)
are forced, the finite-element solution satisfies the boundary conditions in
(43), and consequently the two solutions agree very closely.

The above observations are supported by the numerical results obtained
for the angle-ply plates. Table 7 shows the maximum nondimensionalized de-
flection for two- and sixteen-layer angle-ply (6/-8/6/-9,...) square plate
(Material II) under sinusoidal loading. Since the stiffness coefficient
816 (~1/n) is the largest at & = 45° for a given even number of layers, it
is the worst case in terms of the agreement with the closed-form solution.
However, for n = 16, the finite-element solution is in good agreement with
the closed-form solution. As expected, the results for s = 5° and 30° are
closer to the closed-form solution, even for n = 2, compared to the results
obtained for g = 45°.

Figure 2 shows the effect of side-to-thickness ratio (a/t), number of
layers, lamination angle, and the symmetry boundary conditions on the non-
dimensionalized maximum deflection. Note that for & = 45°, the finite-element
solution obtained with the physical boundary conditions in (45) is about one-
half of the closed-form solution for n = 2, whereas for n = 16 they are
almost identical. When the symmetry boundary conditions in (44) are employed,
instead of those in (45), in the finite-element model, the closed-form and
finite-element solutions are in excellent agreement for any n and ¢ (Figure

2 contains results only for n = 4 and 6 = 45°).
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Figure 3 shows the nondimensionalized deflection versus the lamination
angle for two, four and sixteen layer angle-ply (0/-0/0/-0/.../) square plates
(Material II) under sinusoidal loading. Dark lines and symbols correspond,
respectively, to the closed-form solution and the finite-element solution
with the symmetry conditions of the CFS imposed. They are in excellent agree-
ment with each other. The broken lines in Figure 3 correspond to the finite-
element solution obtained by using the physically appropriate symmetry boundary
conditions. Open symbols are used for thick plates (a/t = 10) and dark symbels

are used for thin (a/t = 100) plates.

Table 8 shows the nondimensionaiized deflection as a function of side-

to-thickness ratio, element type and mesh for a cross-ply (0°/90°/0°, ti=t/3)
plate (Material I with 3, = 3&1) under sinusoidal temperature distribution.
The finite-element results are in excellent agreement with the closed-form
solution. Figure & shows the effect of side-to-thickness ratio (a/t)

on the nondimensionalized deflection and stresses for cross-ply and angle-ply
plates subjected to thermal loading (Pi = 0). The scale for the deflection

and stresses is amplified to show the effect of thickness-shear strain.

Free Vibration Analysis

Once again, the effect of reduced integration and the use of eight and ;
nine node elements on the accuracy of the natural frequencies are studied

using three-layer cross-ply (0°/90°/0°) example problem of Table 1. Table 9

shows the nondimensionalized fundamental natural frequency as a function of
side-to-thickness ratio, type of integration, and type of element. From the
results obtained, it is clear that no single integration type is the best
choice (in contrast to the observations made in the bending analysis) for
all ratios of side to thickness. However, the reduced integration still

seems to be giving better results for most ratios of side to thickness.
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Table 8 Three-Layer (0°/90°/0°) Simply-Supported Square Plate
(Material I, ay = 3(1]) Subjected to Sinusoidal Temperature
Distribution

{
| Deflection = w —
f a/t i Source oy iya !
H E a/b=1/3  a/b=0.5 a/b=1.0  a/b=1.5  a/b=2.0
l i L2x2 1.1154 1.131 1.1530 1.0369 0.80483
S T 1.0730 1.0880 1.1090 0.99741  0.77422
| Q2x2 1.0617 1.0727 1.0917 0.98154  0.76206
| | Q4x4 1.0592 1.0740 1.0948 0.98458  0.76427
; cFs 1.0593 1.0741 1.0949  0.9847 0.7643
L2x2 1.1158 1.1319 1.1546 1.0374 0.80416 |
; - ’ Fen | Loxé 1.0733 1.0887 1.1105 0.99790  0.77362 |
‘ Q2x2 1.0604 1.0740 1.0947 0.98358  0.76259 |
Q4x4 1.0595 1.0747 1.0962 0.98506  0.76370 |
i CFS 1.059 1.0748 1.0963 0.9851 0.7638
‘ L2x2 1.1186 1.1374 1.1658 1.0411 0.79992
20 | Fen | L4 1.0758 1.0936 1.1204 1.0012 0.76982 :
; Q2x2 1.0623 1.0789 1.1047 0.98717  0.75924
i Q4x4 1.0619 1.079% 1.1057 0.98821  0.76003
| CFS 1.0619 1.0795 1.1058 0.9883 0.7601
; L2x2 | 1.1281 1.1565 1.2012 1.0513 0.78946
; 10| rem | Léaxé 1.0842 1.1106 1.1522 1.0104 0.76022
| Q2x2 | 1.0704 1.0953 1.1354 0.99620  0.7499% |
2 Q@xé | 1.0700 1.0958 1.1364 0.99718  0.75070
| CFS 10701 1.0959 1.1365 0.9973 0.7508
| L2x2 1.1625 1.2228 1.2972 1.0713 0.77331
5 | ppy ) Lox4 1.1150 1.1703 1.2406 1.0293 0.74474
| Q2x2 1.1001 1.1529 1.2213 1.0147 0.73473
‘ Q4x4 1.0998 1.1534 1.2224 1.0157 0.73545
CFS 1.0998 1.1535 1.2224 1.01574  0.7355

|
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Figure 5a shows the effect of side-to-thickness ratio on the nondimen-
sionalized fundamental frequency of cross-ply rectangular plates (Material II).
Similar results are presented for angle-ply plates in Figure 5b. Note again,
that the frequencies predicted by the physical symmetry boundary conditions
(in FEM) are substantially different from the closed-form solution for two-
layer (45°/-45°) angle-ply plates. However, for eight-layer angle-ply plates,

this difference vanishes. Figure 5b also shows the nondimensionalized frequency

versus the lamination angle for four-layer angle-ply plates (a/b = 1, a/t = 10,
Material II). The finite-element solutions with both types of symmetry
boundary conditions are close to the closed-form solution and the differences

can be seen on the plot. X
SUMMARY AND CONCLUSIONS

In this study we investigated the effect of mesh, element type, numerical
integration (full and reduced), and boundary conditions on the accuracy of
deflections, stresses and natural frequencies associated with cross-ply as
well as antisymmetric angle-ply plates by comparing the solutions with the
closed-form solutions developed herein. The finite-element solutions are
found to be in close agreement with the closed-form solutions for only 2 by 2
mesh of quadratic elements in the quarter plate (for 4 by 4 mesh, they are
almost identical to the corresponding closed-form solutions). The closed-
form solution for angle-ply plates imply nonphysical symmetry boundary condi-

tions, and its effect on deflections and natural frequencies is discussed.

Reduced integration is essential for the analysis of thin plates, but it is
not crucial for thick plates.
The element developed herein has been applied to the analysis of bi-

modulus (materials having different properties in tension and compression)
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composite plates by Bert et al. [16], and Reddy and Chao [17]. Application

of the present element to transient dynamic analysis is awaiting.
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